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AEROELASTIC RECIPROCITY: AN INDICIAL 

RESPONSE FORMULATION 

Introduction 

The present report describes a continuation of research initiated and reported under grant AFOSR-89-0502. 

The focus of the research has been an experimental and analytical investigation of airfoil indicia! response 

aerodynamics as related to the convolution integral formulation for unsteady airfoil loading. 

The convolution integral formulation for the lift on a flat plate airfoil in arbitrary motion has been derived 

in Reference[l]. The formulation requires an indicial lift function which by definition is the transient lift 

response to a step change in angle of attack. The indicial lift response for a flat plate airfoil experiencing a 

step change in angle of attack due to plunge was first derived by Wagner. In Reference [1], Wagner's function 

is derived under the assumption of small perturbations using a Fourier integral of Theodorsen's function for 

harmonic motions. At the onset of the step Wagner's function jumps instantaneously to one-half the steady 

state lift. Also derived in Reference[l] is Kussner's function for the lift on a flat plate airfoil entering a sharp- 

edged gust The initial lift in this case is zero and approaches steady state as the gust overtakes the airfoil. In 

the case of a 2D airfoil of finite thickness, Reference [2] shows that for an airfoil having a trailing edge with a 

finite angle of convergence the indicial lift at the step onset is zero. This suggests that the subsequent transient 

lift for finite airfoils at small incidence may be similar in form to Kussner's function. Reference [2] cites other 

numerical studies for finite airfoils which appear to agree with the zero initial lift result Reference [3] uses the 

Laplace transform method to derive the lift transfer function for a number of airfoil motions. The Laplace 

domain formulation includes the indicial lift function and results are presented using Kussner's function to 

describe the indicial lift. 

Reference [4] describes a tow tank study designed to measure the normal force response of a NACA 0015 

airfoil experiencing sudden step-like changes in angle of attack by rotation about the quarter. The motivation 

for these experiments was to study airfoil indicial response aerodynamics as defined in the theory of nonlinear 

mathematical modeling for aerodynamic systems [5]. These experiments involved strain gauge load cell 

measurements of the transient normal force loading on an airfoil undergoing a sudden change in angle of attack 

of approximately Act = ±1°. The angle of attack prior to the step onset (a^ was steady and was varied from 

run-to-run over the range 2° < aQ < 60  . 

In the experiments of Reference [4] the test rig may experience large inertial and aerodynamic loading due to 

the rapid starting and stopping required to impart the step. Therefore, an important issue is the degree to which 

aeroelastic reactions deform the structure thereby influencing the output of the strain gauge bridge. Knowledge 

of these reactions is useful in comparing these strain gauge data with the theoretical indicial responses of 

Wagner and Kussner. Part I of this report describes an aeroelastic analysis of the Ohio University tow tank 

test rig. The model is based on the mode superposition method for structural systems and classical linear 

airfoil theory.  The Laplace transform method is used to solve the equations of aeroelasticity in closed form. 

Part II of this report describes an inverse aeroelastic analysis designed to determine the aerodynamic indicial 

response from the aeroelastic response.   The method provides a theoretically sound procedure for determining 



the indicial response experimentally, even though the indicial response is defined mathematically as the response 

to a step motion of diminishing amplitude. Part III describes indicial responses computed with the method of 

Part n using tow tank strain gauge data. 

Ohio University Tow Tank 

A schematic of the O.U. tow tank is shown in Figure la. The facility consists of a large tank with a six 

inch chord NACA 0015 airfoil suspended vertically in the water with a submerged length of 42.0 inches. A 

carriage moves in translation at 2 ft/s (Re = 9.5E4) along roller bearings fixed to I-beams which span the tank. 

The airfoil is driven in rotation by a drive shaft fixed to the airfoil quarter chord at one end, and coupled to a 3.5 

hp stepper motor/gear box apparatus at the other end. Figure lb shows details of the drive shaft and airfoil. 

Shown here are dimensions in inches, and a numbering scheme (1 through 23) defined for the purpose of 

discretizing the mass of the structure as will be discussed in detail. The drive shaft has a number of variations 

in cross section over the length of the shaft which must be considered in modeling the aeroelastic response of 

the structure. Near the middle of the drive shaft is a machined rectangular section which has a strain gauge 

load cell adhered to the shaft. The load cell section is discretized into mass elements 5 through 9 with the strain 

gauges located at the centroid of element 7. The strain gauge circuit is electrically compensated to be sensitive 

to chord normal forces only. The upper most mass element 1 is made of steel while all other parts are 

aluminum. The modulus of elasticity (E) for steel was taken to be 30xl06 psi, and for the aluminum was 

measured to be 7.3xl06 psi.    The modulus of rigidity (G) was taken to be lOxlO6 psi for the steel and for 
4 

aluminum 4xl06 psi.    The area moment of inertia of the airfoil about the chord line is 0.12 in  and the center 

of mass of the airfoil is located 1.335 inches aft of the pitch axis at the quarter chord. The polar moment of 

inertia of the airfoil about the pitch axis is 6.71 in . The densities of steel and aluminum were taken to be 0.3 

and 0.1 lbm/in .   The mass of the airfoil per unit length is 0.1598 lbm/in. 

Theoretical Linear Normal Force Response for Small Angles of Attack 

In an incompressible flow at small incidence, the theoretical linear normal force coefficient response of an 

airfoil given an instantaneous step change in angle of attack by rotation about the quarter chord is related to the 

indicial lift function , T(t), and is given by: 

CN(t) = CNo + .iAa[5(t-0)+L8,(t-0)] + 2nAa(r(t)-r,(t)) 

where CNo is the initial normal force, Act is the step amplitude, 8 is the time derivative of the Dirac delta 

function 6, andr' is the time derivative of T. The first two terms in brackets in Equation (1) are generalized 

functions [6] which describe the noncirculatory component of the loading, while the last group of terms gives 

the circulatory component. For a flat plate airfoil the indicial function can be represented by a two pole curve 

fit to Wagner's function: 

r(t) = [ 1 - 0.165e-°455t - 0.335e-3t ] (lb) 
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Figure lb. Test rig 



Other workers have used Kussner's function for the lift on an airfoil penetrating a sharp-edged gust, in which 

case: 

r(t) = [l-0.5e-13t-0.5e-t] (lc) 

Transient normal force responses of a NACA 0015 airfoil undergoing sudden step-like changes in angle of 

attack by rotation have been measured in the Ohio U. tow tank. Figure 2 shows angle of attack data for a 

typical run (small spikes are electrical noise). The onset angle is 2.09° and the step amplitude is approximately 

+1.25°. The motion resembles, to a reasonable approximation, a small amplitude ramp motion. Equation (1) 

is compared below with the experimental strain gauge data corresponding to the motion of Figure 2. To 

facilitate the comparison, the coefficient 2JI (for a flat plate airfoil) on the circulatory part in Equation (1) has 

been replaced by the static normal force curve slope (for the present NACA 0015) which has been measured in 

an independent test [4]. This substitution is necessary for the response of Equation (1) to approach the same 

steady state as the experimental response. 

Part I:  Aeroelastic Analysis 

The present analysis is based on the mode superposition method for a forced structural dynamic response 

[7], and linear airfoil theory formulated in terms of the convolution integral for the loading on an airfoil in 

arbitrary motion [1]. The structure to be modeled has been shown in Figure lb. Because the pitch axis 

(drive shaft axis) does not coincide with the center of mass of the lower part of the structure (mass elements 13- 

23), it is necessary to consider the coupling between the chord normal and torsional aeroelastic degrees of 

freedom. 

System Representation 

As illustrated in Figure lb, the structure has been discretized into 23 mass elements which are considered to 

be concentrated at the centroid of each element. Under the influence of aeroelastic loading, the masses will 

deflect normal to the airfoil chord referred to here as the normal degree of freedom (NDOF), as well as in torsion 

about the pitch axis hereafter referred to as the TDOF The lowest nine masses (15-23) represent the 

submerged portion of the airfoil, and masses 5 through 9 correspond to the rectangular cross section load cell. 

Masses are concentrated on the load cell to obtain good resolution of the deformation and strain. In the TDOF, 

the mass elements are replaced by polar mass moment of inertia elements. For the TDOF analysis, the structure 

is discretized in the same way as the NDOF for elements 1 through 12, however, elements 13 through 23 are 

lumped into a single inertia element giving a total of 13 inertia elements. The reduction in elements in the 

TDOF is based on the fact that the torsional stiffness of both the mounting block (element 13) and airfoil are 

much larger than the drive shaft, and consequently the mounting block and entire airfoil experience nearly the 

same TDOF deflection. The resulting discretized structure may be described mathematically in terms of a 

diagonal mass matrix [M], a symmetric NDOF flexibility matrix [AN], a diagonal polar mass moment of inertia 

matrix [J], and a symmetric TDOF flexibility matrix [AT]. The flexibility coefficient AN(ij) is by definition 

the deflection of mass i due to a unit force applied at mass j, while AT(i,j) gives the angular rotation of polar 

inertia i due to a unit torque applied to inertia j. The matrix [AN] has been computed by assuming the structure 

to deform as a cantilever beam and integrating the second order differential equation for the elastic beam curvature 
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Figure 2. Angle of Attack Data for Indicia! Response Test 



[8]. A condition of continuous slope is applied at discontinuities in area moment of inertia of the drive shaft. 

The matrix [AT] has been computed using mechanics for shafts in torsion[9]. The analytically derived 

flexibility matrices have been validated to some extent by loading the structure and measuring the deflection at 

selected points. The NDOF stiffness matrix [KN] and TDOF stiffness matrix [KT] are computed by inverting 

[AN] and [AT], respectively, and has been done using an IMSL subroutine. 

Eigenvalue Problem 

The system matrices above have been used to solve the eigenvalue problem for the natural frequencies and 

mode shape vectors of the system. The eigenvalues (natural frequencies) and eigenvectors (modal vectors) have 

been computed using the IMSL subroutine EVCRG. In the mode superposition analysis, the two lowest 

NDOF modes (NDOF1 and NDOF2) have been used, while for the TDOF only the lowest fundamental mode 

has been retained. The corresponding modal vectors are plotted in Figure 3 and given numerically in Table 1. 

The modal vectors are designated below as <t>N1, <|>N2, and «j^ for the NDOF1, NDOF2, and TDOF, 

respectively. 

Table 1. Modal Vectors for NDOF1, NDOF2, and TDOF 

i ♦NI *N2 <t»T 
1 0.003 -0.002 0.0392 

2 0.0011 -0.0073 0.0647 

3 0.0025 -0.0156 0.0983 

4 0.0156 -0.0922 0.1178 

5 0.0229 -0.1332 0.2080 

6 0.0270 -0.1542 0.3687 

7 0.0318 -0.1778 0.5294 

8 0.0375 -0.2038 0.6900 

9 0.0439 -0.2319 0.8507 

10 0.0620 -0.3067 0.9417 

11 0.0928 -0.4287 0.9629 

12 0.1189 -0.5252 0.9867 

13 0.1416 -0.6019 1.0000 

14 0.1661 -0.6790 1.0 

15 0.2090 -0.7609 1.0 

16 0.2803 -0.7984 1.0 

17 0.3642 -0.7455 1.0 

18 0.4581 -0.6027 1.0 

19 0.5595 -0.3783 1.0 

20 0.6661 -0.0871 1.0 

21 0.7760 0.2522 1.0 
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22 0.8877 0.6202 1.0 

23 1.0000 1.0000 1.0 

*The position of element i is located at the centroid of the element (see Figure lb). 

The nondimensional natural frequencies (cob/U, b=semichord, U=velocity) for the NDOF modes were 

computed to be coN1 = 6.374 and »N2 = 26.985 , and for the TDOF coT = 65.782. Notice that the initial 

part of the angle of attack data (the ramp) of Figure 2 has a slope nearly the same as a sine function with a 

nondimensional frequency near 50. This frequency is, in a sense, the excitation frequency. Because the 

NDOF2 and TDOF natural frequencies are near the excitation frequency, it is appropriate to consider these modal 

responses. As seen below, apparent mass and inertia effects tend to reduce the aeroelastic frequencies even 

further. 

Structural Dynamics Model 

The aeroelastic structural response of the O.U. test rig has been modeled using the mode superposition 

method and classical linear airfoil theory. For modeling the rigid body rotation of the rig, a rotation degree of 

freedom (RDOF) is introduced. The RDOF is used to simulate the change in angle of attack of the structure 

due to the rotation imparted by the stepper motor. The NDOF and TDOF as defined above simulate only 

deformations relative to the instantaneous position of the top of the drive shaft where both the NDOF and 

TDOF deflections are always zero. 

In the NDOF and TDOF, the deflections of the structure are given by the normalized mode shape vectors 

multiplied by time dependent modal amplitudes.  The total deflection of the structure is defined by: 

▼N(0 = <t>Niqi (0 + <t»N2q2(0 (?) 

vT = <j)Tg(t) 

a(t) = p(t) 

where vN and vT are the deflection vectors in the NDOF and TDOF, respectively, and a(t) describes the RDOF 

motion. The quantities q^ (t), q2(t), and g(t) are the modal amplitudes which are the generalized coordinates of 

the system. The scalar RDOF motion variable p(t) is the magnitude of the nominal angle of attack as the 

structure is pitched and is an input to the model. This is the angle measured by the rotational potentiometer 

illustrated in Figures la and 2. 

Substituting Equations (2) into the equations of motion for the system and using the orthogonality of the 

modal vectors w.r.t. the system mass and stiffness matrices to uncouple the modal equations [7] yields the 

following three generalized equations of motion: 

Miq! + Kiqj = ^F ßa) 

M2q2 + K2q2 = 4>N2F (3b) 

Jg + CTg+KTg = *TT (3C) 
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where the generalized system properties are scalar quantities given by: 

Ml = <t>Ni[M]<t>Nl , M2 = 4>N2IMMN2 , J = frP^T 

Ki = <t»5ilKN]«t>Nl , K2 = *N2EKN]*N2 , KT = 4>TPT]<I>T (4) 

Op = 2t,j](a x 

The damping term in the last of Equations (3) is included to account for a small amount of rotational "play" in 

the airfoil drive shaft which tends to cause oscillations in TDOF to damp out. In Equation (4), Lj, is the 

damping ratio which was estimated to be 0.05 and coT is the natural frequency in the TDOF. The solution of 

Equations (3) for the generalized coordinates qx (t), q2(t), and g(t) subject to a prescribed RDOF input parameter 

p(t), is described below. All terms in Equations 3 have been nondimensionalized based on freestream velocity, 

semichord length, and the density of water. 

Aeroelastic Normal Forces 

The normal force acting on the structure is decomposed into a rigid body force vector, FR , associated with 

the RDOF, an aeroelastic force vector, FA , due to time dependent aeroelastic deflections along the span of the 

airfoil, and an inertial force vector, Fj , so that in Equations (3), F =   FR + FA + Fj . 

The rigid body force vector is the ideal aerodynamic loading response to a step change in angle of attack due 

to rotation about the quarter chord. These aerodynamic forces are exerted only on the submerged part of the 

airfoil represented by masses 15 through 23 of Figure lb. For a given motion input p(t), the vector FR at any 

time, t, at or after the step is given by : 

FRi=0 ,i=l,2...14 

FRi (t) = jiLi {p(t) + Lp(t)} + CNaLj 
2 

t 

(p(T) + p(T))r(t-T)dT (5) 
0 

, i = 15, 16,...23 

where CN is the static normal force curve slope at the step onset angle, Lj is the span of the im airfoil 

element (see Fig. lb), and T(t-x) is the indicial lift response given by either Equation (lb) or Equation (lc). 

Notice that FR is not a function of the generalized coordinates q^t), q^t), and g(t) since in the ideal response 

the loading is given by (rigid body) 2-D airfoil theory alone. Notice also that if p(t) is a unit step function of 

amplitude A a and L- is unity, Equation (5) becomes identical to Equation (la) (minus the initial lift C^). 

The aeroelastic force vector is also based on the convolution integral formulation for an airfoil in arbitrary 

motion, and again acts only on the submerged part of the airfoil. For the pitch axis at the quarter chord the 

loading is: 

FAj = 0 ,i = l,2,...14 
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FAi (t) = nL; {-(<t)Nli qjCO + <j>N2i q2(t)) + 4>Ti (g(t) + i-g(t))} + 

(6) 

CNaLi I    K<t>Nli qiCO + <t>N2i q2(T)) + <t>Ti (gCO + gCO) ] T(t-x) dx 

JO 
, i = 15.16....23 

where (j^, ■ and (j>N2i are the values of the NDOF1 and NDOF2 mode shapes at element i, respectively, and <j>Ti 

is the value of the TDOF mode shape.   The negative sign on the NDOF terms is due to the sign convention 

adopted. The non-integral terms are the so called apparent mass terms since they may be moved to the LHS and 

combined with the mass term. 

The inertial loading arises from the fact that the centroids of masses 13 through 23 do not coincide with the 

pitch axis. Thus, angular acceleration about the pitch axis produces an inertial normal force which acts at the 

centroid.   The inertial force vector is: 

Fn = 0 ,i = l,2,...12 

Fii(t) = miri{<t.Tig(t) + p(t)} , i = 13.14....23 CO 

where m- is the mass of element i and r- is the distance from the pitch axis to the centroid. 

Aeroelastic Moments 

The moments acting on the inertial elements of Figure lb are also decomposed into a rigid body moment 

vector, TR , an aeroelastic moment vector, TA , and an inertial moment vector, Tj , giving a total moment of: 

T = TR + T. + Tj. The rigid body moment and the aeroelastic moment act only on the submerged part of the 

airfoil. The expressions for these components are simplified by the fact that the circulator}7 normal force acts at 

the quarter chord (for a flat plate airfoil) giving a zero moment arm in the present study. For a NACA 0015 

airfoil the circulatory normal force (at Re~10^ ) acts within 2% fraction of chord from the quarter chord and on 

this basis has been neglected.   The rigid body moment for rotation about the quarter chord is: 

TRi=0 ,i=l,2,...14 

TRi(t) = -JiLi{p(t) + 3.p(t)} , i = 15.16....23 (8) 
8 

The aeroelastic moment vector acting on an airfoil in arbitrary motion with the pitch axis at the quarter 

chord is given by: 

TAi = 0 , i = 1. 2....14 

TAi (t) = JiL; { i.(4,Nli ^(t) + (t»N2i q2(0) - <j>Ti (g(0 +|g(0)} (9) 

, i = 15.16....23 

The inertial moment vector is: 

Tn = Jip(t) ,i=l,2,...12 
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Tu (t) = ms r, GNU qj(t) + 4>N2i q2(t)) - Jj p(t) (10) 
,i= 13,14,....23 

where J- is the mass moment of inertia of element i. 

Notice that Equations (3a,b,c) are coupled through the force and moment terms given by Equations (5) 

through (10). 

Input Rigid Body Motion 

Two input motions have been considered and are illustrated in Figure 4. The first motion is a step function 

input of magnitude A a and the second input is small amplitude ramp modeled after the experimental angle of 

attack of Figure 2.   These motions are expressed mathematically by: 

p(t) = Aau<t-0)   (step) (Ha) 

p(t) = 4fl. t (|i(t-0) - u(t-ts)) + A a |i(t-x s)      (ramp) (1 lb) 
x s 

where \i is the unit step function, and x& (=0.13 semichords) is the ramp duration which is determined from the 

experimental angle of attack data. As will be seen, it will be necessary to take the Laplace transforms of 

Equations (11a) and (1 lb) which yields, respectively: 

P(s) = Aa. (step) (He) 
s 

P(s) = Aa.(l-e-sxs) (ramp) (lid) 
s2xs 

where , s, is the Laplace variable. 

Solution of the Generalized Equations of Motion 

The Laplace transform method is used to transform the three generalized differential Equations (3a,b,c) into 

three algebraic equations which are linear in terms of the transformed generalized coordinates. These equations 

are solved simultaneously for the transformed generalized coordinates as functions of the Laplace variable, s. 

The inverse Laplace transform is performed to transform these solutions to the time domain to obtain qj(t), 

q^t), and g(t). The Laplace transform of each of Equations (3) can be done by hand using standard tables. To 

perform the extensive algebra required in the solution, the computer program MACSYMA has been used. 

MACSYMA is capable of symbolic mathematics required in the solution of the simultaneous equations in 

terms of the Laplace variable, s. The resulting equations of motion in the Laplace transform domain are quite 

long and are omitted here. Once the Laplace transforms of Equations (3) have been done, the solution proceeds 

by first rearranging, using MACSYMA, the system of three equations into the following form: 
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Aii(s) A12(s) A13(s) 

A2i(s) A22(s) A23(s) 

A3l(s)   A32(s)   A33(s) w 
Qi(s: 

Q2(s; 

G(s) 

0\     [Fi(s)\ 
;)  =  F2(s)   P(s) 

J     IF3(S)| 

(12) 

whereQi(s) is the Laplace transform of q^t), Q2(s) of q2(t), and G(s) of g(t). In Equation (12), P(s) is the 

Laplace transform of the motion input parameter p(t) (Equation (1 lc) or (1 Id)). Equation (12) can be solved 

using Cramer's rule to yield: 

{X(s)} = {R(s)}P(s) (13a) 

where {X(s)} is a 3x1 vector given by: 

(Ql(s)| 

{X(s)}= Q2(S) 

I G(s) J 
(13b) 

and the 3x1 vector {R(s)} is an aeroelastic transfer function which is a function of the Laplace variable, s, only 

and is given by: 

Ri(s)= 

Fi(s) Ai2(s) Ai3(s) 

F2(s) A22(s) A23(s) 

F3(s) A32(s) A33(s) 

An(s) Ai2(s) Ai3(s) 

A2i(s) A22(s) A23(s) 

A3i(s) A32(s) A33(s) 

Au(s)    Fi(s)    Ai3(s) 

A2i(s)    F2(s)    A23(s) 

■ , R2(s)= 
A31(s)    F3(s)    A33(s) 

An(s)   Ai2(s)   Ai3(s) 

A2l(s)   A22(s)   A23(s) 

A3i(s)   A32(s)   A33(s) 

R3(s)= 

An(s) Ai2(s) Fi(s) 

A2i(s) A22(s) F2(s) 

A3i(s) A32(s) F3(s) 

Ai i(s) Ai2(s) Ai3(s) 

A2i(s) A22(s) A23(s) 

A3i(s) A32(s) A33(s) 

where the brackets indicate the determinant It has been found efficacious to perform the necessary algebra so 

that R^s), R2(s), and R3(s) are the form of the quotients of two polynomials. This amounts to manipulating 

Equation (12) so that all of the terms in the square matrix [A] and the terms in the vector {F} are at most 

polynomials (i.e. not themselves quotients). Quotients will appear in [A] and {F} due to the exponential form 

of theindicial function T(t-t).     Recalling form Equations (lb) and (lc), the indicial function is of the form: 

T(t) = 1 - Ae51 - Bebt, which has the Laplace transform: 
B _ (l-A-B)s2 + (Ab-i-Ba-a-b)s +ab ^^ 

s(s-a)(s-b) 
Y(s) = I- A... 

s   s-a   s_b 

The quotient may be eliminated by simply multiplying the entire system of Equations (12) by the denominator 

of Y (s). This will render the terms of [A] and {F} as non-quotients and simplify the Laplace inversion by 

partial fraction decomposition which follows. 

Substitution of a particular input motion, P(s), into Equation (13a) gives the solution for the generalized 

coordinates in the Laplace domain.    For the step input of Equation (lie), the result for each generalized 



14 

coordinate is in the form of a quotient of two polynomials in s, wherein the numerator is a tenth order 

polynomial and the denominator is an eleventh order polynomial. For the ramp motion of Equation (1 Id) the 

result is a tenth order divided by a twelfth order polynomial. 

In either case, the inverse Laplace transform is accomplished by decomposing the quotients using partial 

fractions into functions which can be inverted by hand. In the partial fraction decomposition MACSYMA has 

been used to find the roots of the polynomial in the denominator. In the step input case the denominator has 

five real roots while in the ramp input the denominator has six real roots with a repeated root at s=0. The real 

roots arise from the leading constant and the exponential terms in the indicial response function, T, and the real 

roots of the motion function P(s). In both the step and ramp input cases, the denominator further has three 

pairs of complex conjugate roots which represent the oscillatory (harmonic) response of the structure at the three 

frequencies associated with the NDOF1, NDOF2, and TDOF. The numerical values of the frequencies of the 

harmonic response can be traced to the mass (including apparent mass) and stiffness terms in the governing 

aeroelastic equations. The set of simultaneous equations for the undetermined constants in the partial fraction 

expansion terms have been solved using direct factorization with maximal column pivoting [10]. Pivoting is 

recommended since the coefficients in the simultaneous equations vary over several orders of magnitude. 

It is worth noting that in the ramp motion input case it is not necessary to use the full form of P(s) as 

given by Equation (1 Id). This is because the last exponential term on the right hand side results in an inverse 

transform identical to the inverse transform of the term which precedes it, but shifted in time by an amount, x$. 

Thus it is only necessary to use P(s) = Aa/s2T$ when calculating this case, and subsequently subtracting from 

this solution an identical solution shifted in time by xs- This effect can be seen in the solution presented below 

as Equation (14b). 

For the step input case, the solutions for the generalized coordinates qj(t), q2(0> and g(t) can be represented 

generally by the function f(t) which has the following form: 

f(t) = A + Bebt + Cect + Ded' + Feft + 

e^Gcoscoit + Hsincoit) + eit(Jcosco2t + Ksinct)2t) + ^(Mcoscost + Nsina>3t) 

where the constants are given in the following table. The constants in Tables 2 and 3 were computed using the 

Wagner function for the indicial lift function, T. 

Table 2. Constants for Generalized Coordinates for Step Input using Wagner Function 

qi(t) 92« g(t) 

A 1.241e-2 1.196e-4 0 

B -1.417e-3 -3.178e-6 -9.786e-9 

C -6.001e4 -1.537e-5 7.451e-9 

D -3.162e-3 1.601e-5 -1.531e-7 

F -3.619e-5 -4.268e-5 -2.328e-10 

G 8.407e-3 -3.149e-5 -5.536-5 

H 2.042e-2 -9.484e-5 A836e-5 
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J 7.314e-4 7.155e-3 -3.273e4 

K 1.476C-4 1.725e-3 -5.791e-5 

M -1.584e-2 -6.993e-3 -2.075e-2 

N -3.740e-4 -13T7cA 6.344e-4 

The remaining constants apply to each of q^(t), q^t), and g(t) 

b = -0.04522 

c =-0.04565 

d=-0.2877 

f=-0.29989 

h = -0.55591 

j = -0.49752 

m =-2.71184 

co 1(NDOFl) = 2.3361 

co2(NDOF2)= 12.186 

co3(TDOF) = 52.2147 

For the ramp motion input, the solutions for q^t), q2(t), and g(t) in the time domain can be represented by 

a function of the form: f(t) - fi(t-xs) f(t-tg) (e.g. q^t) = f(t) - u(t-xs) f(t-xs)), where xs is the ramp duration 

(0.13 semichords), and [i(t-xs) is the unit step function. As has been mentioned, the shifting in time of the 

function f(t-ts) is due to the exponential term in the Laplace transform of the motion input P(s) of Equation 

(lid). In the ramp case, f(t) has the form: 

f(t) = A +Et + Bebt + Cect + Dedt + Feft + 

e^Gcoscoit + Hsincoit) + .eJ^Jcosa^t + Ksino^t) + emt(Mcosco3t + Nsina>3t) 

Notice the ramp motion gives rise to a term proportional to time t. This might be expected since the ramp 

motion produces an upwash at the 3/4 chord proportional to t. For times beyond x&, this term goes to Exs 

(=const) to give the steady state lift The constants in f(t) and are given in the following table. 

Table 3. Constants for Generalized Coordinates for Sudden Ramp Input using Wagner Function 

qi(0 <fe(0 g(t) 

A -0.3578 -2.91e-3 -2.874e^ 

B 0.3246 -1.335e-3 8.305e-7 

C 1.759e-2 4.467e-3 -4.240e-7 

D 8.482e-2 -4.460e-4 3.971e-6 

E 9.548e-2 9.205e-4 0 

F 5.894e-4 1.114e-3 1.20e-7 

G -6.988e-2 3.190e-5 1.918e-4 

H 1.106e-2 -2.777e-5 -1.367e^ 



J -1.135e^ -1.278e-3 

K 4.573e-4 4.463e-3 

M 1.644e-4 6.946e-5 

N -2.327e-3 -1.027e-3 

16 

4.527e-5 

-2.046e^ 

4.579e-5 

-3.055e-3 

*The values of the remaining constants are the same as given in Table 2. 

The above solutions are in closed form and have the mathematical properties that might be anticipated. 

That is, the exponential terms giving the response to a circulatory build-up in lift after the motion input, and an 

oscillatory component which occurs at three distinct frequencies that arise due to the modal excitation and 

coupling in the forcing terms on the RHS of Equations (3). Notice the reduction in the aeroelastic frequencies 

in the results above from the natural frequencies (given previously) in the respective modes due to apparent mass 

effects. The solutions given above are plotted in Figures 5a-l where the modal coupling can be observed in the 

frequency content of each modal solution. The solutions are given for both the step and ramp motions and 

have been calculated using both the Wagner function and the Kussner function as the indicial lift. The 

conditions are indicated in the caption of each figure. As might be expected the step input tends to excite the 

higher frequency TDOF more than the more gradual ramp input. 

A comparison of Figures 5g and 5h as well as Figures 5i and 5j indicates that the oscillations in the 

Kussner function solution persist for a longer period of time than the Wagner solution. This is due to the fact 

that the Kussner function provides no damping at the step onset where the Kussner function has a value of zero. 

The Wagner function, on the other hand, has an instantaneous value of 0.5 at the step origin which provides 

significant damping through the integral terms in Equations (6). 

It is of course possible to input other motions than those of Equations (11a) and (1 lb). For example, the 

trigonometric function: p(t)= (Aa/2jiXcost - sincostXn(t-0) - ^(t-x$)) + Aan(t-xs) may be used to represent 

the step, where co s = 2jt/xs. This function has continuous first and second derivatives. The solution for the 

generalized coordinate is of the form f(t) - n(t-xs) f(t-xs), where: 

f(t) = A +Et+(Usinco st + Vcoscost) + Be bt + C€* + Dedt + Fe* + 

e~ht(Gsinco \l + Hcosco it) + e"Jt(Jsinco2t + Kcosci>2t) + e"mt(Msinco3t + NCOSCO31) 

Notice that the period of cos is xs and consequently, the harmonic terms containing cos cancel identically for 

times greater thanxs (according to f(t) - n(t-xs) f(t-xs)). The results for this input are similar to the ramp 

input and are not presented here. 

Calculation of the Sensible Normal Force at the Load Cell 

The purpose of the present analysis is to determine the effects of aeroelasticity on the output of the strain 

gauge load cell used in the experiments described above. In these experiments the strain gauge output is 

interpreted ideally as that due to a moment exerted by a normal force applied at the midspan of the submerged 

part of the airfoil (point loads were applied here to calibrate the strain gauge bridge). In reality, however, this 

is not the case since the strain gauge output is determined solely by the instantaneous beam curvature at the cell. 

This curvature is due, not to aerodynamic loading alone, but rather the total aeroelastic structural response. 
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Figures 5a and 5b. Step Solution for the NDOF1 Generalized Coordinate qi (t) using: 
a) Wagner Function, b)Kussner Function. 
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Figures 5c and 5d. Step Solution for the NDOF2 Generalized Coordinate q2(t) using: 

a) Wagner Function, b)Kussner Function. 
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Figures 5e and 5f. Step Solution for the TDOF Generalized Coordinate g(t) using: 
a) Wagner Function, b)Kussner Function. 
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Figures 5g and 5h. Ramp Solution for the NDOF1 Generalized Coordinate qi(t) using: 
a) Wagner Function, b)Kussner Function. 
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Figures 5i and 5j. Ramp Solution for the NDOF2 Generalized Coordinate <j2(t) using: 

a)Wagner Function, b)Kussner Function. 
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Figures 5k and 51. Ramp Solution for the TDOF Generalized Coordinate g(t) using: 

a) Wagner Function, b)Kussner Function. 
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From beam theory the moment at the center of the load cell (centroid of element 7) is related to the beam 

curvature by: 

MucCt) = El {qi(0^l)   + q2(0¥) > <&> 
dx2   '7 dx2   77 

where x is measured along the span. The second derivative has been computed numerically from the NDOF 

mode shapes for elements 5 through 9 using a five point numerical derivative given by Richardson's 

extrapolation method [10]. A time dependent "sensible" normal force acting at the midspan of the submerged 

portion of the airfoil which produces the same moment as that given by Equation (15a) may then be defined for 

comparison with experimental normal force data. For this purpose, the moment arm between the mass 7 and 

the midspan is Ljjn = 37.0 in. These results are presented in the form of a sensible normal force coefficient 

definedas: 

CN(t) = CNo + 
M^(t)/L^ (15b) 

pU2bL 

where CN, is the normal force at the origin of the motion, p is the density of water, and L is the submerged 

airfoil length (42.0 in), U and b are the freestream velocity and the semichord length, respectively. 

Aeroelastic Analysis Results 

Sensible force calculations using the present model are compared below with the experimental normal force 

data of Reference [4]. A comparison is also made with recent accelerometer data taken on the Ohio U. tow tank 

rig undergoing the motion illustrated in Figure 2. In these tests an accelerometer (PCB Flexcel Series 336A) 

was placed on mass 13 (see Figure lb) with the accelerometer centered on the pitch axis. The accelerometer 

data have been integrated once and put in the form of velocity. The present model can predict velocity at any 

point on the structure by taking the time derivative of Equations (2). The accelerometer data and normal force 

data below were acquired in separate runs. 

Sensible Force and Accelerometer Comparisons 

The two motion inputs given by Equations (11a) and (lib) have been considered. The sensible force 

corresponding to the step input is compared with experimental strain gauge data in Figures 6a and 6b. Figure 6a 

has been computed using Wagner's function and Figure 6b has been computed using Kussner's function. Also 

shown is the theoretical response based on the Wagner function and Kussner function, respectively. There are 

three frequencies present in the aeroelastic model. The lowest frequency has a period of approximately 2.5 

semichords and is associated with the NDOF1 fundamental mode. The second frequency has a period of about 

0.5 semichords and is due to the NDOF2 mode, and the third highest frequency with a period near 0.1 semichord 

is due to the coupling between the TDOF and the NDOF1 and NDOF2. It is clear that aeroelastic reactions 

have caused significant deviation from the theoretical response particularly before about 1.5 semichords. 

The sensible force based on the aeroelastic response with the sudden ramp input of Equation (lib) is 

illustrated in Figures 6c and 6d.   The response directly after the motion inception is in better agreement with 
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Figures 6a and 6b. Sensible Force Results for Step Input using 
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the strain gauge data than the step input results. A comparison of the aeroelastic response of Figures 6a,b and 

6c,d indicates that the step input excites the NDOF and TDOF coupling more than the sudden ramp motion. 

At small times the experimental data exhibit discernible oscillations, which in the analytical force, are associated 

with the NDOF2 mode. The amplitude of these oscillations is in better agreement with the Wagner function 

model than the Kussner. As has been pointed out in relation to Figures 5i and 5j, the Kussner function 

provides very little damping of the NDOF2 mode, which is also evident in the sensible force results of Figure 

6d. It appears that the use of the Wagner function gives better agreement overall with the experimental data. 

It should be noted that the uncertainty in the experimental data is near 10%. 

A comparison between the aeroelastic analysis using motion 1 step input and accelerometer data is shown 

in Figure 7a (based on Wagner function). The accelerometer data have been integrated numerically and put in 

the form of velocity data. Again, the use of the step function input excites the TDOF mode more than the 

experimental data indicates. The use of the sudden ramp motion gives the results of Figure 7b (based on 

Wagner function) where the agreement between the experimental data and the analysis is very good. Use of 

Kussner's function gives results similar to those in Figures 7a and 7b. 

Part II: Inverse Aeroelastic Analysis 

Described below is an inverse aeroelastic analysis directed towards computing the aerodynamic indicial 

response given the system structural properties and the total aeroelastic response. The aeroelastic response 

may be known from experimental strain gauge and/or accelerometer data which by their very nature will 

contain the total aeroelastic response. The following analysis focuses on computing Wagner's function 

from the analytical aeroelastic response which has been described in detail above. Only the ramp input 

motion is considered. 

The problem in the inverse analysis may be stated as follows: Given the structural properties of a 

systemri.e. mass and stiffness) and the time dependent aeroelastic response to a known excitation (motion 

input), what must the aerodynamic indicial response be to produce this aeroelastic response? 

Indicial Response Formulation 

The Laplace transform method has been used in the present inverse analysis. Taking the Laplace 

transform of Equation (3a), simplifying, and rearranging yields an expression of the form: 

(alS + ^-)Qi(s) + a3sQ2(s) + (34 +a5s)(P(s) + G(s)) = 
s (16) 

[a6sQi(s) + a7sQ2(s) + 38(1 + s)(P(s) + G(s))]y (s) 

where , s, is the Laplace variable, a, through ag are constants, and as before, Q^s), Q2(s), and G(s) are the 

Laplace transforms of the time dependent generalized coordinates qj(t), q2(t), and g(t).   The term P(s) is the 

Laplace transform of the ramp motion input (Equation (lid) given by:  P(s) = ^2- (1 - e"STs) , y (s) is the 
^s 

Laplace transform of the indicial response function (Wagner function) which is to be determined.       It 

should be noted that the terms in Equation (16) containing P(s) and G(s) have been grouped together.    Thi s 

is a due to the particular structure being modeled wherein the value of the mode shape in the TDOF is unity 
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for elements 13 through 23 (see Figures lb and 3). The result is that the terms containing the RDOF 

coordinate P(s) and the TDOF coordinate G(s) have the same coefficients. 

Equation (16) may furtherbe simplified by eliminating the TDOF variable G(s) as follows.   Taking 

the Laplace transform of the TDOF Equation (3c) and solving for G(s) yields an expression of the form: 

G(s) = ( 1 )((c4s + c5s2)P(s) + c^Qi (s) + c7s2Q2(s)) (17) 
eis2 + C2S + C3 

where Cj through c? are constants. Notice that G(s) is not a function of the indicial response y (s) which 

is a consequence of the pitch axis being located at the quarter chord. From an experimental design 

standpoint this is a judicious choice since it simplifies the equations of aeroelasticity. Substituting 

Equation (17) into (16), simplifying to eliminate any superfluous constants, and solving for the indicial 

function y (s) yields: 

(s) = Bi(s)Qi(s) + B2(s)Q2(s) + B3(s)P(s) (18) 

B4(s)Qi(s) + B5(s)Q2(s) + B6(s)P(s) 

where: 

Bi (s) = b! + h. +   sfe + b4s) (19a) 
s2     s2 + bss + bß 

B2(s) = b7+    Sfo8 + b9s) (19b) 
s2 + b5S + bß 

B3(S) =^10 + bi i + ftl2 + bi3S+bi4S2) (19c) 
s s2 + bss + bß 

B4(s) = b15+    bl6s(1+s) (19d) 
s2 + bfs + b$ 

B5(s) = b17 +    b18s<1+s> (19e) 
s2 + b5S + bß 

B6(s) = bi 9(1+1) + (b20 + b2is+b22s2) (19f) 
s s2 + b5S + bo 

where the lower case b, through b~2 are known constants, given in Appendix A. The physical origins of 

the constants b, through b22 may of course be traced to the constants in the Equations (3a) and (3c). For 

example, b2 is the generalized stiffness K, in Equation (3a). Variations of Equations (19) are of course 

possible depending on how one chooses to perform the simplifying algebra. The forms above have been 

found efficacious in that, as will be seen, it will be necessary to express the Laplace variable , s, as a 



29 

complex number and then separate the resulting real and imaginary parts of the Bi(s) through Bg(s) 

functions of Equations (19). 

The principal task is to perform the inverse Laplace transform of Equation (18) for known Qi(s), 

Q2(s), and P(s). In situations where qi (t), q2(t) , and p(t) are known analytical functions of time it will 

generally be possible to express Qi (s), Q2(s), and P(s) as functions of s by simply taking their Laplace 

transforms. In this case it would theoretically be possible to substitute the transformed functions into 

Equation (18) and invert the resulting expression for y (s) analytically using partial fraction decomposition. 

This is essentially the approach that has been used in the aeroelastic analysis described in the Part I of this 

report, where the transformed indicial function y (S) has been expressed in analytical form and the resulting 

expressions for Qi (s), Q2(s), and G(s) have been inverted analytically for a given morion input P(s). 

It is a purpose of this research to investigate a method for experimentally determining the indicial 

function and, as such, it is expected that the functions qi(t), q2(t), and the motion input p(t) will be in the 

form of discrete data in time which generally cannot be curve fit with simple closed form functions. As 

will be seen, in this instance it is possible to perform a numerical Laplace inversion of Equation (18). As 

discussed below, the functions qj(t) and q2(t) may be obtained from the total aeroelastic response contained 

in strain gauge and/or accelerometer data. 

In the above analysis Equation (3a) (NDOF1) and (3c) (TDOF) have been combined to give Equation 

(18). It is alternatively possible to use Equations (3b) (NDOF2) and (3c), however, it has been found that 

the use of (3a) rather than (3b) is a more robust formulation. Although no systematic error analysis has 

been performed, it appears that determining (from experimental data) the NDOF2 coordinate, q2(t), is more 

susceptible to error than determination of the larger NDOF1 coordinate, q^t). Equation (3a) is less 

sensitive to these errors than Equation (3b) since the coefficients of q2(t) in (3a) are an order of magnitude 

smaller than those in (3b). It is also possible to combine all three Equations (3a), (3b), and (3c). This 

method has likewise been found to be less stable than that based on Equations (3a) and (3c). 

Numerical Inverse of Laplace Transform 

The method of Reference[l 1] has been used to numerically invert Equation (18). Briefly, the method 

evaluates the inverse by means of a Fourier series, and is essentially a numerical computation of the 

Laplace inversion formula: 

• a+ioo 

r(t) = -i- estv(s)ds (20) 
J a-ioo 

where , a, is a constant such that any singularities of y (s) lie to the left of the line integral in the complex 

plane.    Letting s = a + ico so that y (s) = y(a,co), Equation (20) may alternatively be expressed by: 

T(t) = ^L [ °° [ Re (y (a,co)) costot - Im (y (a,co)) sincot ] da> (21) 
Jt   JO 

A trapezoidal rule approximation to Equation (21) on the time interval (0,2T) is given by: 
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r(t) = (£1) r ^L + l   { Re ( Y (a , kn/T)) cos(kjit/T) - Im (y (a , kjt/T)) sin(knt/T) } ] (22) 
T 2      k=l 

Equation (22) provides an approximation to the exact value of the indicial response function. The value of 

T is chosen to be T = 0.8 t^ , where ^ is the largest time for which T(t) is to be approximated. 

The value of a is chosen according to a = a - ln(E)/2T , where a is a number slightly larger than the 

maximum real pole of y (s), and E is the desired maximum relative error. The relative error is defmed as 

the error in the approximation divided by the maximum value of the function to be approximated. Thus, if 

the approximation is to converge to at least two significant figures the relative error would be set to 0.005. 

Of course in practice the summation in Equation (22) would contain only a finite number of terms 

designated henceforth as N.    The reader may consult Reference [11] for additional details of the inversion 

method. 

To numerically invert Equation (18) using Equation (22), it is necessary to treat the Laplace variable, s, 

as a complex number and separate y (s) into real and imaginary parts. The functions B j(s) through Bg(s) 

as well as the transformed generalized coordinates Q^s) and Q2(s) and the motion input P(s) will each 

contain a real and imaginary part.   Letting s = x + iy, the resulting expression for y (s) will be given by: 

y (x.y) = y R(x,y) + i y i(x,y) C233) 

where y R(x,y) and y j(x,y) are the real and imaginary parts, respectively, of y(x,y) which are given by: 

YR(x,y) = NRSR + NlSl       f      Yl(Xiy) = NiSR-NRS! (23b) 

SR+S! SR+SI 

and 

NR(x,y) = (B1RQ1R - BnQn ) + ( B2RQ2R - B21Q21 ) + ( B3RPR - B^ ) (23c) 

Ni(x,y) = ( BIRQH + BnQiR) + ( B2RQ2i + B21Q2R) + ( B3RP1 + B31PR) (23d) 

SR(x,y) = ( B4RQIR - B41Q11) + ( B5RQ2R - B51Q21) + ( BöRPR - BeiPi) (23e) 

Si(x,y) = (B4RQ11 + B41Q1R ) + ( B5RQ2i + B5IQ2R ) + ( BöRPI + B^PR) (23f) 

where the subscripts R and I indicate real and imaginary parts, respectively. The separation of the 

generalized coordinates and the motion input into real and imaginary parts is discussed below. The 

separation of the functions B^s) through Bßts) is accomplished by substituting s = x + iy into the 

Equations (19) and performing the necessary algebra. For example, the function B3(x,y) = B3R(x,y) + 

iB3j(x,y), has real and imaginary parts given by: 
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B3R(x,y) = b10x  + bi i + (*2-y2+b5*+ b6Xbi2+bi3X+b14(x2-y2)) + (2xy+b5y)(b13y+2bi4xy) 

x2+y2 (x2-y2+b5X+b6)2 + (2xy+b5y)2 

(24) 

B3i(x,y) = "b10y + (x2-y2+b5X+b6Xb13y+2b14xy) - (2xy+b5y)(bi 2+bi3x+b14(x2-y2)) 

x2+y2 (x2-y2+bsx+b6)2 + (2xy+bsy)2 

The remaining expressions for B 1 (s) through Bö(S) may similarly be separated into real and imaginary parts. 

For using Equation (24) in the approximating Equation (22) one would set x = a , and y = kitt/T. It should 

be noted that at points of discontinuity, the above method will converge to T(t) = ( T(t+) + T(t-) )/2 , 

where t is the time of the discontinuity. Indicial responses may contain points of discontinuity such as 

Wagner's function which is discontinuous at t = 0. 

Other numerical inversion methods may also be used such as that described in Reference [12], in which 

the inverse is obtained in terms of orthonormal Laguerre polynomials. The inverse transform is given 

by: 

r(t) = eat |  %<&„(!) (25) 
n=0 T 

where, a, is a real constant larger than any real singularities of y (s), and On(i-) are Laguerre polynomials. 

The constant T is a scaling factor chosen according to: T= tmax/N , where ^^ defines the time interval of 

interest, and N is the number of terms in the summation of Equation (25). This choice of T ensures that 

the oscillatory frequencies of the Laguerre polynomials are compatible with those of the function to be 

approximated.   The constants c  are given by: 

CQ = _L_ 2 h(9j) , c„ = _2_ 2 h(8j) cos (n6j)   , n*0 (26a) 
N+lj=0 N+lj=0 

where: 8; = (2L±_L) 5. j = 1,2.....N (26b) 
J    V2N+r2 

h(9j) = J- [ YR( a, Xcot-1) - (-Lcot-1) y ( a, -LcoU.) ] (26c) 
J     2T 2T     2       2T     2     1      2T     2 

where y R(x,y) and y j(x,y) are defined above.  In evaluating Equation (25) using Equations (26a)-(26c) one 

would set x = a, and y = J-cotJ-.  The Laguerre polynomials in Equation (25) may be evaluated using the 
2T     2 

recursion formulas: 

$o(t) = e-t/2 

*i(t) = (l-t)*0(t) (26d) 
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n$n(t) = (2n -1 - t)<V!(t) - (n - l)*n-2(0 , n>l 

It has been found that this method agrees with the method of Reference [12] for intermediate and large 

values of time, however, for small time the method gives oscillatory results. Results from both methods 

are presented below. 

Transform of Generalized Coordinates: Analytical Form 

The numerical inversion of Equation (18) has been done using the analytical solutions for qi (f) ,q2(t) , 

and g(t) given by Equation (14b) for the ramp motion input case. In this case the functions Qj(s) and 

Q2(s) are in the form: F(s) (1 - e^s), where F(s) is the transform of f(t) in Equation (14b). Notice from 

Equation (lid) that the function P(s) also contains the term (1 - e*Ts) so that in Equation (18) this term 

can be canceled out of numerator and denominator. For evaluating Equations (23), Q^(s) and Q2(s) may be 

obtained by taking the Laplace transform of Equation (14b), substituting s = x + iy , and separating into 

real and imaginary parts to obtain Q1R(x,y), Qn(x,y) ,Q2R(X,V) and Q2i(x,y). The resulting expressions 

are rather long and are omitted here. The functions PR(x,y) and P^x.y) are likewise obtained from 

Equation (1 Id).  The software MACSYMA may be useful in performing the complex algebra. 

Indicial Response Results: Analytic Form 

The indicial response results are shown in Figure 8a using the method of Reference [11] along with 

Wagner's function. In the caption, a is a variable used to calculate the real value, a, of the Laplace 

variable of integration, N is the number of terms in the Fourier series, tmax is the largest time for which 

the indicial response is the approximated, and E is the relative error also used to calculate the parameter, a. 

Each of these quantities is a required input. It has been found that these parameters can be varied 

significantly and still provide good agreement with the theoretical value. For example setting N'=100, 

tmax=50 , and E=.0001 yields virtually the same results. It is of course necessary to choose a to be larger 

than the largest real pole of Y (S). The indicial response is underpredicted at the point of discontinuity at t=0 

by one-half the actual value which, as has been mentioned, is implicit to the method. For times above 

about one semicbord the agreement between the numerical results and the Wagner function is excellent. 

The oscillations in the numerical results arise from the harmonic series used in the approximation. Shown 

in Figure 8b are the results using the inversion method of Reference [12]. Shown in the caption is the 

required input to the algorithm. The method gives highly oscillatory results at small times. In fact, the 

data below about 0.2 semichords have been clipped because the amplitude of oscillation is off the scale of 

the Figure. For larger times the agreement is very good. These and subsequent calculations have been 

done on an IBM p.c. (Pentium) using BASIC and requires approximately 5 minutes of computation time. 

The calculations of the results of Figures 8a and 8b require approximately thirty seconds. 

Transform of Generalized Coordinates: Discrete Form 

The treatment of q^t), q2(t), and p(t) in the form of discrete data points is directed towards the situation 

wherein these values would result from experimental measurements as described below.    The functions for 
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Figure 8a and 8b. Indicial Response Results for Analytical Input using 8a) Ref.[l 1], 

a=0.01, N=200, E=le-6, tmax=100, 8b)Ref.[12], a=0.01, N=200, tmax=50. 
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q^t) andq2(t) given by Equation (14b) and p(t) given by Equation (1 lb) have been used to generate discrete 

values for these functions at a time interval of At = 0.01 semichords (.0012 sec). This time interval was 

chosen because it is representative of the Ohio U. tow tank. These data when plotted would then closely 

resemble the curves in Figures 4,5c, and 5e.  The Laplace transform of any function f(t) is defined by: 

F(S): e"stf(t)dt (27) 

If f(t) is in the form of N discrete data points fQ , f: fN  at times tQ , tx   tN , respectively, a 

trapezoidal rule approximation to (27) is: 

F(s) = At [ 1( f0 + e-stN fN) + j  e"stj f j] (28) 
2 J'=l 

Substituting s = x + iy and separating into real and imaginary parts yields F(x,y) = FR(x,y) + iFj(x,y), 

where: 

FR(x,y) = At [ L( f0 + e"xtN cos(ytN) fN) + V  e xtj cos (ytj) f j] 
2 j=l 

(28a) 

N-1   -Xt: 
F!(x,y) = At [ - i-e"xtN sin(ytN) fN) - £  e   Jsin (vtj) f j] 

2 j=l 

where the identity e"iyt = cos(yt) - i sin(yt) has been used.    For evaluating Equations (28a) using the 

method of Reference [11] (Equation (22))one would set x = a, and y = krct/T, whereas using the method of 
a. 

Reference [12] (Equation (26c)) x = a, and y = -i-cot-i-.        It has been found in the present case that 
2T     2 

applying Equations (28a) over a time interval of approximately twenty semichords gives an adequate 

approximation to the Laplace transforms of Q1R(x,y), Qn(x,y) ,Q2R(x,y), Q2i(x,y), pR(x>y) and Pi(x>y)- 

Indicial Response Results: Discrete Form 

The inverse results using method of Reference [11] is shown in Figures 9a and 9b, where it is seen 

that the agreement with the Wagner function is very good. A comparison of Figure 9a and 9b shows the 

effect of the number of terms used in the Fourier series, with the increase in the number of terms increasing 

the frequency content of the results. Figure 9c shows the results using the inversion routine of Reference 

[12] where again there are significant oscillations near the origin. 

Inverse Formulation in Terms of Experimental Data 

Typical experimental data may include force measurements and/or accelerometer measurements. The 

force measurements could be either strain gauge or integrated pressure measurements. Below we assume 

the existence of a set of discrete strain gauge normal force data C^t) and a concurrent set of chord normal 
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Figure 9a and 9b. Indicial Response Results for Discrete qi/t), q2(t), and p(t) Input using 

9a) Ref.[ll], cc=0.01, N=100, E=le-6, tmax=100, 9b)Ref.[ll], a=0.01, N=300, 
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Figure 9c. Indicial Response Results for Discrete qj_(t), q2(t), and p(t) Input using 
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Figure 10. Analytical Acceleration Data of Element 13. 
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accelerometer data a(t) at some point on the structure. To initially investigate the use of experimental data, 

while also making use of the analytical information above for guidance, we generate fictitious normal force 

dataandaccelerometer data. The strain gauge data are the sensible force data shown previously Figure 6c 

(labeled "Analytical") and given by Equations (15a) and (15b). The accelerometer data are shown in Figure 

10 and have been generated using: 

a(t) = Diq1(t) + D2q2(t) (29a) 

where D} andD2 are simply the values of the first and second mode shapes, respectively, at the point on 

the structure at which the acceleration is measured, and the derivatives of qi (t) and q2(t) are obtained by 

differentiating Equation (14b). The acceleration data is chosen to be the chord normal acceleration of 

element 13 measured on the pitch axis (see Figure lb). The force and the accelerometer data have been 

generated at a time interval between data points of 0.01 semichords (.0012 sec), which is reasonable from an 

experimental standpoint. Note that the analytical displacement of any point on the structure is also known 

from the solution given by Equation (14b). 

The displacement of the structure, d(t), may theoretically be obtained by numerically integrating the 

accelerometer data. This has been done using both a trapezoidal method as well as Simpsons three point 

method Both methods have proven to give unsatisfactory results in that the error in the integrated results 

grows continuously as shown in Figure 1 la along with the analytical displacement for comparison. The 

time step between data points was reduced to 0.005 with the same result. No systematic attempts have 

been made to pinpoint the source of the error. 

The displacement may alternatively be computed from the accelerometer data by numerically solving 

the second order differential equation: 

d(t) = a(t) (29b) 

subject to the boundary conditions d(0) = 0, d(tM) = dgs, where tM is some time at which steady state is 

assumed to exist, and ds s is the steady state displacement. Notice that the steady state displacement can 

be computed from the steady state values of qi (t) and q2(t) and their respective mode shapes without regard 

to actually solving Equations (3). The steady value of qi (t) can be computed directly from Equation (3a) 

and Equation (5). The only term on the LHS of Equation (3a) which survives in the steady state is the 

stiffness term, whereas on the RHS the only surviving term is the leading term in the integral of Equation 

(5) which becomes CNaLj ps s, where ps s is the steady value of p(x). The steady state value of qi (t) may 

be easily found from these two surviving terms. The steady value of q2(t) may likewise be found from 

Equation (3b).   Thus, it is reasonable to assume that ds s may be known a priori. 

Equation (29b) has been solved using a fourth order Runge-Kutta method [10] and the results are shown 

in Figure 1 lb with the analytical displacement for comparison. The slight discrepancy between the two is 

in part due to the assumption of steady state after 25 semichords in the numerical results, while the 

analytical steady state is reached assymtotically. An advantage of the Runge-Kutta method is that it forces 
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Figures 1 la and 1 lb. Displacement Results using 1 la) Simpsons Method, 1 lb) Fourth 
Order Runge-Kutta Method. 
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the experimental displacement to the proper steady state. 

The normal force data, Cj^t), and displacement data are related to the generalized coordinates by: 

Cw(t) = Kiqi(t) + K2q2(t) (29c) 

d(t)-Diqi(t) + D2q2(t) (29d) 

where the constants K^ (=12.014) and K2 (=5.148)canbededuced from Equations (15a) and (15b). Taking 

the Laplace transform, letting s = x + iy, and solving for the real and imaginary parts of Q1R, Q1T, Q2R, 

and Q2j yields: 

QiR(x,y) = (D2CNR(x,y) - K2E>R(x,y))/(D2Ki - DiK2 ) (30a) 

Qll(x,y) = (D2CM(x,y) - K2Di(x,y))/( D2Ki - DiK2 ) (30b) 

Q2R(x,y) = (CNR(x,y) - KiQiR(x,y) )/K2 (30c) 

Q2i(x,y) = (CM(x,y) - Kj Qx i(x,y) )/K2 (30d) 

where CK1R(x,y) and CNI(x,y) are the real and imaginary parts, respectively, of the transformed normal force 

data, and DR(x,y) and Dj(x,y) the real and imaginary parts of the displacement data, both pairs being 

evaluated numerically using Equations (28a). Equations (30) provide the relations for the generalized 

coordinates necessary to evaluate Equations (23). Figure 12 is a flow chart of the procedure for using the 

experimental data in the inversion routine of Reference [11]. 

It should be noted that theoretically it is possible to arrive at the transforms of the generalized 

coordinates directly from the accelerometer data without solving Equation (29b) to obtain displacement. 

The Laplace transform of Equation (29a) is: 

A(s) = s2( DiQi(s) + D2Q2(s)) (31) 

where A(s) is the Laplace transform of a(t). Setting s = x + iy, Equation (31) may be combined with 

Equation (29c) to provide alternative relations for Q1R, Qn, Q2R, and Q2! in terms of C^x.y), 

CM(x,y), and AR(x,y), Aj(x,y) where, as before, these quantities are evaluated using Equations (28a). 

This method has proven unsuccessful since Equation (28a) is a trapezoidal rule integration and as has been 

seen (Figure 1 la), integration of the acceleration data by this method is unstable. 

Inverse Indicia! Response Results: Experimental Data Formulation 

The inverse results using the fictitious strain gauge and displacement data are shown in Figure 13. 

These results are based on the method of Reference [11]. The numerical results are slightly larger than the 

theoretical indicia! response.   This difference may be attributed to error introduced in the calculation of the 
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I. Input: Necessary Constants 

Input: C^t), d(t), and p(t) versus time data 

II. Set: a=.01 

E=lE-6 

N=100 

a = a-ln(E)/2T 

III. Set: x = a 

yk = krc/T  ,   k = 0, 1 N 

IV. For each value of (x,yk), k = 0, 1....N perform the following: 

1. Compute B1R(x,yk), B2R(x,yk), B6R.(x'yk)and 

Bn(x,yk), B2I(x,yk), B^x^) using Equations (19) 

2. Compute CNR(x,yk), C^x^), DR(x,yk), Dj(x,yk), PR(x,yk),and 

Pj(x,yk) using Equations (28a) 

3. Compute Qi R(x,yk), Q1I(x,yk)> Q2R(x,yk), and Q2(x,yk) 

using Equations (30) 

4. Compute y R(x,yk) and y i(x,yk) using Equations (23) 

V. For Each Time, t, of Interest Compute T(t) using 

Equation (22) 

Figure 12. How Chart for Computing Inverse Laplace Transform using Strain Gauge and 
Displacement Data. 
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Figure 13. Indicia] Response Results for Strain Gauge and Displacement Data Input using 

Ref.[ll], <x=0.01, N=200, E=le-6, tmax=100. 



42 

displacement data from the accelerometer data as has been described in relation to the results of Figure lib. 

Nevertheless, the agreement is still very good. 

Part III:    Experimental Studies 

This section incorporates the use of experimental strain gauge data in the inverse aeroelastic model 

described above. The strain gauge data were taken as described in the introduction to this report and in 

detail in Reference[4]. 

Simplified Aeroelastic Model 

The aeroelastic model described in Parts I and II of this report has been simplified by considering the 

NDOF1 mode only. This simplifies the formulation in that the generalized coordinates for the NDOF2 

and TDOF are no longer required. This yields the Laplace transformed aeroelastic reciprocal equations for 

the indicial response y (s) and the NDOF1 generalized coordinate Qj(s): 

=   Bi(s)Qi(s) + B2(s)P(s) 
YU      B3(s)Qi(s) + B4(s)P(s) 

and 

. , ,     EAi(s) + A2(s) T(S)] P(s) 
Ql(S)=        A3(s)+A4(s)Y(s) <33> 

where A1(s)-A4(s) and B1(s>B4(s) are functions of the Laplace variable only and may be deduced from 

Equations 16 and 17 or alternatively from the Equations 3 through 10 by neglecting the NDOF2 and the 

TDOF coordinates. By separating the above Equations into real and imaginary parts as has been 

described, either Equation may be inverted to the time domain to obtain either T(t) or qj(t) using the 

numerical procedure outlined in the previous section. For introducing the experimental strain gauge data 

in Equation 32, q^t) is obtained using Equation 29c (neglecting q2), and p(t) is the experimental angle of 

attack. The simplified model eliminates the need for a second measurement for obtaining q2(t) as in the 

previous section. In Equations 32 and 33, the Laplace transforms Qi(s), y (s), and P(s) are computed 

numerically using Equations 28. 

Figure 14 illustrates the effect of neglecting higher modes on the sensible force at the strain gauge. 

The solid curve illustrates the sensible force considering higher modes as heretofore described and the broken 

line illustrates the simplified model. As expected, the simplified model does not exhibit higher frequency 

coupling.  The two curves would be expected to have similar (numerical) Laplace transforms. 

Validation of Reciprocal Model 

In this section experimental strain gauge data are used to compute Qj(s) and angle of attack data are 

used to compute P(s) to obtain the indicial response T(t) via Equation 32 and the numerical inversion 

method of Reference[ll]. This indicial response solution is used to compute y (s), which is then used in 
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Figure 14. Comparison of Sensible Force using Simplified Model with Higher Order 
Model. 
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Equation 33 to reproduce the reciprocal solution for q^t). This reciprocity provides a validation of the 

model and a measure of aeroelastic effects. 

Figure 15a illustrates angle of attack data for a step onset of 2°. The initial onset angle has been 

subtracted off so that the initial angle is shown as zero. The Figure illustrates two separate runs with one 

step up (increasing a) and one step down. Here attention is focused on the step up case. Figure 15b 

illustrates qj(t) data computed from the strain gauge data using Equation 29c. The initial values have 

again been subtracted off. Figure 16a illustrates the numerical solution for the indicia! response as well as 

the indicial response computed directly from the strain gauge data using: T(t) = C^(t)/Aa . Here the 

numerical indicial response is multiplied by the steady state slope CNa (= 8.0/rad) which was measured 

independently in steady alpha tests. It can be seen that after about one semichord the numerical solution 

tracks the mean of the experimental results. The experimental result contains some higher frequency 

oscillations which are not completely understood. The frequency of the oscillations is not close enough to 

the computed NDOF2 frequency to lead one to the conclusion that these are associated with the NDOF2 

bending mode. The oscillations may be associated with roughness and/or misalignment in the tow tank 

track. Nevertheless, the results indicate the the effects of aeroelasticity on the strain gauge output are 

predominately confined to a small period shortly after the step input. Figure 16b illustrates the reciprocal 

numerical result for qj(t) obtained using the numerical indicial response solution of 16a. The reciprocal 

solution is in agreement with the experimental input. The numerical result does not contain some of the 

higher frequency content present in the experimental data which is most likely due to the limited number of 

terms used in the Fourier inversion routine. It is worth noting in Figure 16a that the numerical inversion 

routine predicts half the initial value at time zero, which is a consequence of the formulation [11]. 

Figures 17a and 17b illustrate the reciprocal pair using the experimental data of Figures 15a and 15b 

for the step down case. As seen in Figure 17a, the effects of aeroelasticity are confined to times below five 

semichords. 

Central Difference Formulation for the Indicial Response 

Ideally the indicial response for the step up and step down cases would be identical. Comparisons of 

Figures 16a and 17a indicates some differences between the two cases. These may be due in part to 

slightly different onset conditions and aerodynamic reactions to the step. In each case the step height was 

approximately one degree and the nondimensional pitch rate was about 0.15. The effective angle of attack 

at the leading edge in the step up and step down cases during the pitch motion are significantly different due 

to the wash induced by the pitch motion. Subsequent boundary layer and wake formation may be 

influenced by these events. 

To account for differences in step up and down results, the indicial response has been computed using a 

central difference given by: 

nt) = ru(t)Accd+rd(t)Aau (34) 

Aau + Aa<i 
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Figure 16a. Numerical Indicial Response Results and Directly Computed Indicial Response 
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Figure 17a. Numerical Indicial Response Results and Directly Computed Indicial Response 

for Step Down at an Onset Angle of 2°. 
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where the subscript "u" refers to step up and "d" to step down. The central difference results are shown in 

Figure 18 along with the theoretical result of Wagner. The present result indicates a smaller indicial 

response than that predicted by Wagner. 

Figure 18 indicates that the effects of aeroelasticity are strongest below about two semi chords after the 

step. This is due to the large inertial loads generated by the rapid step input. This is an important result 

when considering that it is not necessary to experimentally impart rapid step-like input motions as has been 

done in the present tow tank studies in an attempt to directly measure the indicial response. It should only 

be necessary to consider small amplitude motions which are locally linear in the indicial response (i.e. the 

response is the same over the motion amplitude). Such a motion might include a more gradual small 

amplitude ramp. This type of motion would not involve the large inertial loading experienced in the 

present rapid step motions and may give better results. The use of a rapid step motion was motivated in 

earlier tests designed to directly measure the indicial response which is defined for a step input The present 

aeroelastic formulation does not require a rapid step input. The present method for determining indicial 

responses would appear to be applicable to wind tunnel rigs and three dimensional rigs so long as the 

aeroelastic equations are valid. 

High Angle of Attack Case 

This section describes the treatment of experimental step up and step down cases for an onset angle near 

17°. The principal difficulty in the higher angle case is the validity of the aerodynamic loading terms in 

the equations of aeroelasticity, and in particular the so-called noncirculatory terms. The discussion below 

deals with a simple method for estimating the noncirculatory loads using one of the modal aeroelastic 

equations.   Below attention is focused on the NDOF2 Equation 3b which is of the form: 

M2q2 + K2q2 = Cip + c^p - c3qi - c4cJ2 + circulatory terms (35) 

where Ci through CA are constants and the circulatory terms are formulated in terms of the convolution 

integral. In the linear case the constants ci through C4 all contain the two dimensional noncirculatory 

aerodynamic loading term, :x, multiplied by structural terms (mode shapes) which arise in formulating the 

uncoupled generalized Equation (see Equations 5-7). If one of the constants is known, each of the other 

constants may be computed therefrom from the known structural properties. 

The constant CA may be combined with M2 and thus the term apparent mass. The free vibration 

response is therefore governed by: 

(Ml + C4)q2 + K2q2 = 0 (36) 

which has a harmonic solution with a frequency of vibration given by: 

0)2 = Jx,
Kl (37) 1      VM2 + C4 
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Thus, assuming the structure is linear so that K2 and M2 are constants, a measurement of «2 would allow 

one to compute the the apparent mass c4 using Equation (37). The remaining constants Cj through C3 may 

be computed from C4.    The algebra is left to the interested reader. 

An accelerometer located on mass element 13 has been used to measure the frequency response of the 

test rig at various step onset angles of attack. A FFT was performed on the accelerometer signal and the 

power spectral density has been computed. The power spectral density is simply the magnitude of the 

complex Fourier coefficients [7]. The results for onset angles of 2°, 11°, and 25° are illustrated in Figure 

19. Recalling that the NDOF2 aeroelastic frequency based on linear airfoil theory was around 12 

rad/semichord.it is seen that the NDOF2 response occurs at nearly the same frequency in all three cases. 

This suggests that the apparent mass and/or noncirculatory loading at higher angles of attack may be similar 

to that for the linear low angle case.    These results are preliminary and presented here as conjecture. 

Using the same governing equations as in the linear case, and analyzing experimental data for an onset 

angle of 17° in a way parallel with that described above for the 2° onset case yields the indicial response 

shown in Figure 20. These results are based on the central difference formulation above involving both a 

step up and a step down run. Again it appears that aeroelastic reactions ar strongest for times below about 

two semichords. 
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Conclusion 

The research described herein has focused on two areas. The first is a detailed aeroelastic analysis of an 

airfoil test rig undergoing rapid motion at low incidence. The analysis has led to a relatively general 

method to solve the differential equations of aeroelasticity in closed form using Laplace transforms and 

state-of-the-art computer software(MACSYMA) for performing the required algebraic operations. The 

results indicate that aeroelastic reactions may have a significant effect of strain gauge data and should be 

considered in experimental design of the type described as well as subsequent data reduction. 

The second area of research has been directed towards developing a method to determine the airfoil 

indicial response from typical aerodynamic measurements such as strain gauge and accelerometer data. 

The method is essentially a solution of the equations of aeroelasticity expressed in reciprocal form for the 

indicial response given the aeroelastic response. Because the method is directed to the reduction of 

experimental data in discrete form, a numerical method has been used. The method provides a theoretically 

sound approach for determining an indicial response experimentally, even though the indicial response is 

defined for an instantaneous step of diminishing amplitude. It has been shown that given an aeroelastic 

response computed using Wagner's function, the inverse method correctly determines the indicial response 

to be Wagner's function. The method has been applied to a limited number of experimental cases as well. 

The method may have applications for other types of systems such as heat transfer and pure structural 

modeling as the governing equations are similar in form. 

The author believes that the type of research described in this report can provide guidance in the design 

of future experiments. It is anticipated that an experimental apparatus could be designed to circumvent 

some of the difficulties encountered using the present rig. For example, it should be possible to design a 

structure for which it is necessary to consider only a single mode of vibration, as opposed to the system of 

three modes given by Equations (3a)-(3c). Also, the fact the present airfoil was pitched about the quarter 

chord simplifies the formulation for the aerodynamic moments. Furthermore, it was necessary to consider 

the normal/torsional coupling in the aeroelastic analysis primarily because the center of mass of the airfoil 

was not on the pitch axis. It should be possible to judiciously add mass to the test rig so that the center 

of gravity would coincide with the pitch axis to minimize these effects. Finally, as has been noted, it is 

not necessary to experimentally impart rapid step-like input motions as has been done in the present tow 

tank studies. The rapid step-like motions were motivated by attempts to directly measure the indicial 

response which is defined theoretically for a step motion. It is only necessary' to consider small amplitude 

motions which are locally linear in the indicial response. Such a motion might include a very gradual 

small amplitude ramp. This type of motion will not involve the large inertial loading experienced in the 

present rapid step motions. The present method for determining indicial responses would appear to be 

applicable to , tow tunnel rigs, wind tunnel rigs, and three dimensional rigs as well so long as the 

aeroelastic equations can be accurately formulated 

Future work may focus on using the present approach to determining the indicial response over a range 

of onset angles of attack, and using the responses in a numerical convolution integral to predict large 

amplitude motions such as ramp motions for which baseline experimental data exist for comparison. This 

should further provide validation of the indicial responses. 
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Appendix A 

This Appendix gives the values of the constants appearing in Equations (19a)-(19f). 

b1 = 20.5091 b9 =-3.4639 b17 = 6.7969 

b2 = 113.576 b10 = -25.4171 blg= 15.2134 

b3 = -16.7068 b: : = -14.7368 bJ9 = 64.7242 

b4 = -9.6866 b12 = 49.8633 b2Q =-126.9761 

b5 =3.6241 b13 = 54.0083 b21 = -190.8867 



b6 = 1143.83 b14= 14.5516 

b? = -2.6691 b15 =-44.9456 

bg = -5.9743 b16 = 42.5436 
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b22 = -63.9107 


